两点之间直线最短是非常符合人的直觉的,但在欧氏几何中两点之间直线最短并不是以公理形式存在的,也就是说是需要证明的,本文就讨论如何证明这一点。
求经过(a, \(\alpha\))和(b, \(\beta\))最短的曲线,这里只考虑平滑曲线\(y=u(x)\),根据微积分和极限的基本原理,可以把曲线切分成非常短的片段,在非常短的范围里\(\delta x \to 0\),可以把曲线理解为直角三角形的斜边,则曲线长度\(s = \sqrt{ (\delta x)^2 + (\delta y)^2}\),所以曲线距离公式为:
\[ J(u) = \int_{a}^{b}\sqrt{1 + u^{'}(x)^2}dx \]
\[ s.t. \quad u(a) = \alpha,\quad u(b) = \beta \]
为了表示方便令\(p = u^{'}(x)\),则曲线长度表示为
\[ J(u) = \int_{a}^{b}\sqrt{1 + p^2}dx \]
证明两点之间直线最短是一个求极小值的问题,要证明一个函数的极小值的“点”(在这里这个“点”还是一个函数),只要证明在函数这个“点”一阶导数为零,二阶导数大于零。下面按照这个套路来进行证明:
\[ \frac{dJ[u+\xi v] }{d\xi} |_{\xi \to 0} = \frac{dJ[u+\xi v]}{d[u+\xi v]} \cdot \frac{d[u + \xi v]}{d\xi} \]
\[ = \frac{dJ[u+\xi v]}{du} \cdot v \]
\[ \quad \quad = < \bigtriangledown J;v> \quad\quad (1) \]
\[ h'(\xi) = \frac{dJ[u+\xi v] }{d\xi} |_{\xi \to 0} = \int_{a}^{b} \frac{d[\sqrt{1 + (u' + \xi v')^2}]}{d\xi}dx |_{\xi \to 0} \]
\[ = \int_{a}^{b} v' \frac{u' + \xi v'}{\sqrt{1 + (u' + \xi v')^2}} dx|_{\xi \to 0} \]
\[ = \int_{a}^{b} v' \frac{u'}{\sqrt{1 + (u')^2}} dx \]
\[ = v(x)\frac{u'(x)}{\sqrt{1+ (u'(x))^2}}|^{b}_{a} - \int_{a}^{b} v \frac{d[\frac{u'}{\sqrt{1 + (u')^2}}]}{dx} dx \quad\quad (2) \]
已知曲线经过(a, \(\alpha\))和(b, \(\beta\)): \[ u(a) = \alpha, \quad u(b) = \beta \]
\[ \widehat{u}(x) = u(x) + \xi v(x) \]
\(\widehat{u}\)也必然经过(a, \(\alpha\))和(b, \(\beta\)),有:
\[ \widehat{u}(a) = u(a) + \xi v(a) = \alpha \]
\[ \widehat{u}(b) = u(b) + \xi v(b) = \beta \]
所以:
\[ v(b) = 0, \quad v(a) = 0 \]
\[ v(x)\frac{u'(x)}{\sqrt{1+ (u'(x))^2}}|^{b}_{a} = 0 \]
\[ h'(\xi) = - \int_{a}^{b} v \frac{d[\frac{u'}{\sqrt{1 + (u')^2}}]}{dx} dx \quad\quad \]
\[ = < \bigtriangledown J;v> \]
可以得到一阶导数:
\[ \bigtriangledown J = - \frac{d}{dx}\frac{u'}{\sqrt{1 + (u')^2}} \]
\[ = - \frac{u''}{[1 + (u')^2]^{\frac{3}{2}}} \] 令一阶导数等于0,得到 \[ u''(x) = 0 \]
\[ u(x) = cx + d \]
此时已经可以看到一阶导数等于0情况下,这条“曲线”就是一条直线,只需再证明二阶导数大于零,问题即可得证
为了便于表示,令: \[ m = u' + \xi u' \]
\[ \frac{dm}{d\xi} = u' \]
利用公式(2)的中间结果可知
\[ h''(\xi) |_{\xi \to 0} = \frac{dh'(\xi)}{d\xi} = \int_{a}^{b} \frac{d}{d\xi}v' \frac{u' + \xi v'}{\sqrt{1 + (u' + \xi v')^2}} dx|_{\xi \to 0} \]
\[ = \int_{a}^{b} \frac{d}{d\xi} v' \frac{m}{\sqrt{1 + (m)^2}} dx|_{\xi \to 0} \]
\[ = \int_{a}^{b} v' \frac{v'\sqrt{1+m^2} - \frac{mv'}{\sqrt{1+m^2}}}{1+ m^2}dx|_{\xi \to 0} \]
\[ = \int_{a}^{b} (v')^2 \frac{(m-\frac{1}{2})^2 + \frac{3}{4}}{(1+m^2)^{\frac{3}{2}}}dx|_{\xi \to 0} \]
\[ = \int_{a}^{b} (v')^2 \frac{(u' -\frac{1}{2})^2 + \frac{3}{4}}{(1+u'^2)^{\frac{3}{2}}}dx \]
可以看到\(h''(x)\)一定是大于零的,因此直线就是通过两点之间的最短曲线,证毕。
参考资料
<<Introduction to the calculus of variations>> Peter J. Olver